Marine water cooled exhaust systems are designed to withstand temperatures of up to about 120°C. However the exhaust gases from the engine may reach in excess of 450°C. In order to protect the exhaust system it needs a continuous flow of cooling water from the engine, should this flow be interrupted by debris being sucked into the intake or by a problem with the water pump or simply forgetting to open the seacock then the exhaust temperature will start to rise immediately. Depending on the extent of the blockage the increased temperature can cause seriously damage the exhaust system and water lock. The engine water temperature and/or oil temperature alarms will eventually alert you, however there can be a considerable time lag especially if the engine has been started from cold which means that damage may already have be done.

In order to protect the exhaust components and provide the earliest possible warning you need measure the temperature INSIDE the exhaust. Systems which measure the outside temperature will inevitably be delayed as the heat has to make its way through the exhaust components.

This product uses a quality stainless steel in-exhaust probe containing a platinum wire sensor. The control unit allows the exhaust temperature to be monitored and the alarm point set to a temperature appropriate for your engine.

Note: Exhaust temperature alarms protect the exhaust system components not the engine; you will still need the engine water/oil temperature alarm.

The sensor has been designed so that it can be fitted without the need to dismantle any of the exhaust system components.

Cut the steel band to size making sure you leave enough overlap. Make sure the cut end has no burrs else it will be difficult to feed through the worm drive.

Assemble the sensor as shown, the shake proof washers should go either side of the steel band, tighten the nuts firmly. No thread should protrude below bottom nut (see picture).

Select a point on the hose about 150mm downstream from the water injection point. Drill a 4mm hole avoiding the steel reinforcement rings (If you have a horizontal hose it is preferable to mount the sensor on the top). Push the sensor through the hole into the exhaust pipe and secure firmly.

The sealing O ring should make a good waterproof seal; if in doubt add a little silicon sealant.

Use a cable tie to secure the cable to the hose clamp as shown.
The Sensors, power and external alarm connect via a junction box which then connects via a single cable to the display unit. The junction box would be situated close to the engines.

Dual engine wiring is as follows
1. +12v from port engine ignition
2. +12v from starboard engine ignition
3. External alarm (positive)
4. Ground wire
5. Sensor 1 (port)
6. Sensor 1 / Sensor 2 common
7. Sensor 2 (Stbd)

Single engine wiring is as follows
1. +12v from engine ignition
2. No connection
3. External alarm (positive)
4. Ground wire
5. Sensor 1
6. Sensor 1
7. No Connection

Display Cable

The display is connected to the junction box with a 5 metre cable that is supplied with the kit. To connect the cable to the display unit; open the back of the display and plug the cable in as shown in the picture below. Make sure you push the cables in **until they click**, test by pulling gently on the cable to ensure they are locked in position.

Should you require a longer length cable then these are available from Silicon Marine or from a local electrical store. The cable is a standard RJ12 6 core cable which is often used for telephone extensions and should be available locally.

External Alarm

The external alarm is connected between pin 3 (+) and pin 4 (-)

An additional external is supplied with the kit for mounting at any convenient location and is often mounted on the outside of the junction box. If you wish to add your own alarm (or even a third alarm) then please observe the following; use a 12v piezo self-resonating sounder with a current consumption of less than 500mA, do not use electro mechanical buzzers as these often cause electrical interference. A low power relay may be connected to the alarm output if required.

Fuses; the control unit contains internal self-resetting fuses on the supply and alarm output, therefore it does not require external fuses. Should the internal fuse fail it will be automatically reset when the overload is removed or the power turned off.

Dual Display

An additional display unit may be connected and mounted at a second steering position. To connect the second unit simply insert a 3 way RJ12 splitter into the cable between the first display unit and the junction box. When power is applied both displays will show the same information and changes to the configuration on one display will automatically be sent to the other. The dual display kit contains the splitter and additional cable.
INITIAL SYSTEM TESTING

Apply power to the unit by switching on the ignition, the display should light up and the screen display the exhaust temperature as shown in the pictures below). There is no on/off button so the unit will be on whenever the ignition is on.

If one of the sensors displays the message ‘Sensor Error’ then check the connections going to the sensor are correct. Sensor 1 (port) is between connector pins 5 & 6 and Sensor 2 (stbd) is between 6 and 7. If this looks correct check the resistance of the sensors, it should read between 1000 and 2000 ohms.

Check that the alarms sound by selecting the ‘Alarm Test’ option from the menu. To access this hold down the UP Arrow for 3 seconds then release the button, the screen will then display a menu. Scroll down the menu using short presses on the Down Arrow key to select ‘Alarm Test’ then press the Up Key for about 1 second (a longer press on the key acts like an ‘ENTER’ key). The alarm will now sound, check that both the displays internal alarm and external alarms sound. To turn off the alarm press any key.

The Exhaust alarm is now ready to be used, the initial alarm temperature is set to 95°C (203°F) which is probably higher than it needs to be and this can be adjusted after the first trial with the engine running.

Setting the alarm temperature

It is important that you adjust the alarm temperature following the first trial with the engine running. If the temperature is set too high then the response to a cooling water loss will be slower than it needs to be and if set too low will possibly give false alarms when the engine is running hard.

The display keeps track of the maximum recorded temperature for each engine, after running the engine for sufficient time to bring it up to its normal working temperature, add 20°C (68°F) to the maximum temperature and use this for setting the alarm temperature. (Each engine has its own alarm setting).

See the section below for how to navigate the menus and set the alarm temperature.

When the alarm sounds it can be momentarily silenced by pressing any key. If the temperature is still high after 2 minutes then the alarm will sound again. The temperature must fall 5°C (9°F) below the alarm temperature for the alarm to turn off.

Display symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Alarm temperature, audible alarm enabled</td>
</tr>
<tr>
<td>✗</td>
<td>Temperature graph displaying temperature over time. The line represents the alarm point above which the alarm will sound.</td>
</tr>
<tr>
<td>✧</td>
<td>Led indicators show status for each engine sensor</td>
</tr>
<tr>
<td>✰</td>
<td>Green indicates = OK, Steady Red = Sensor Error</td>
</tr>
<tr>
<td>✿</td>
<td>Flashing red = Temperature Alarm</td>
</tr>
<tr>
<td>✦</td>
<td>Maximum recorded temperature</td>
</tr>
</tbody>
</table>
Function key operation

The display unit has two function keys ‘UP’ and ‘Down’ and depending on how long the key is pressed determines its function. With a short press (less than a second) the keys performs like up/down buttons for selecting items from a menu. A longer press (1 second or more) on the ‘UP’ key acts like an ‘ENTER’ key for selecting an item, whilst a longer press on the ‘DOWN’ key acts like an ‘ESC’ key for exiting.

In addition to this when the unit is in its normal operation mode and displaying temperatures a three second press on the ‘UP’ key is required to enter the setup menu.

On the dual display unit a short press on the ‘UP’ key scrolls through single sensor display mode, this allows you to see the maximum temperature which is only displayed in this mode.

Menu options

When the unit is in its normal operation mode and displaying temperatures the System Menu can be accessed by pressing the ‘UP’ button for three seconds then releasing the key. To exit the menu or return to a previous menu press the down button for at least 1 second this acts like an ‘ESC’ key. The menu structure is as shown below. Example; to select Sensor 1 alarm temperature first select ‘Sensor 1’ which will then display a sub menu, then select ‘Alarm Temp’.

Main Menu
- Sensor 1
 - Alarm Temp (Temperature at which the alarm will sound)
 - Alarm Enable (Disables/enables the audible alarm)
 - Name (Change the displayed name for the sensor, i.e. Main/Aux/Gen etc.)
- Sensor 2
 - Alarm Temp
 - Alarm Enable
 - Name
- System Config
 - Backlight (Maximum backlight brilliance, it will auto-dim at night)
 - Night Threshold (Determines when unit dims display for night mode)
 - Contrast (Display contrast setting)
 - Update Rate (Update rate for the graph, 15/30/60 seconds per division)
 - Units (Centigrade / Fahrenheit)
 - Sensor Enable (Disable a sensor, the display will no longer show the sensor nor will the alarm sound)
 (Not available on single sensor model SM007S)
- Reset Stats (Resets the maximum sensor temperature display to current temperature also resets the graph)
- Alarm Test (Tests the internal and external alarm, press any key to cancel)

Dual display functionality

Two display units may be operated in parallel giving you the ability to have a second display and alarm at an alternate steering position. When operated together you only need one set of temperature sensors, the units will determine between themselves which will be ‘master’ and which will be the ‘slave’. The master unit will take the temperature readings and pass them digitally to the slave. Both units appear to operate identically to the user and any changes made to the configuration settings on one unit will automatically be passed to the other* if a master unit were to fail or be turned off then the slave unit will automatically take over the role.

A small flashing dot is the only indication which unit is acting as the master, if the dot is in the upper left corner of the display it is master.

* Except brightness, contrast and night threshold
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM007/D</td>
<td>Complete Dual Marine Exhaust Temperature Alarm Kit</td>
</tr>
<tr>
<td>SM007/S</td>
<td>Complete Single Marine Exhaust Temperature Alarm Kit</td>
</tr>
<tr>
<td>SM007/A</td>
<td>Slave display unit</td>
</tr>
<tr>
<td>SM5002</td>
<td>Temperature Sensor</td>
</tr>
<tr>
<td>SM5006</td>
<td>Temperature Sensor Retaining Clip</td>
</tr>
<tr>
<td>SM5016</td>
<td>10m Extension cable</td>
</tr>
</tbody>
</table>

Specifications

Supply Voltage: 9 – 30v DC, 28mA (no alarm) 80mA internal alarm sounding.

Sensor Temperature range: -20 - + 250°C (display will only show 0- 200°C)

Temperature probe: Marine grade stainless steel with platinum wire sensor
1.0m cable rated at 260°C

Calibration: +/- 1°C self-calibrating.

Alarm range: 0 - 199°C user adjustable in 2°C steps.

Alarm Output: +12v out when alarm sounds, 0.5A max.

Fuse: Internally fused with self-resetting fuses

Designed and Manufactured in the United Kingdom